9,361 research outputs found

    A new gravitational wave background from the Big Bang

    Get PDF
    The reheating of the universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubble-like structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating: First, tachyonic preheating makes the amplitude of gravity waves grow exponentially fast. Second, bubble collisions add a new burst of gravitational radiation. Third, turbulent motions finally sets the end of gravitational waves production. From then on, these waves propagate unimpeded to us. We find that the fraction of energy density today in these primordial gravitational waves could be significant for GUT scale models of inflation, although well beyond the frequency range sensitivity of gravitational wave observatories like LIGO, LISA or BBO. However, low-scale models could still produce a detectable signal at frequencies accessible to BBO or DECIGO. For comparison, we have also computed the analogous background from some chaotic inflation models and obtained similar results to those of other groups. The discovery of such a background would open a new observational window into the very early universe, where the details of the process of reheating could be explored. Thus, it could also serve as a new experimental tool for testing the Inflationary Paradigm.Comment: 20 pages, 8 figures, to appear in the Proceedings of JGRG17, Nagoya (Japan), 3-7 December 200

    The Decay of the Standard Model Higgs after Inflation

    Full text link
    We study the nonperturbative dynamics of the Standard Model (SM) after inflation, in the regime where the SM is decoupled from (or weakly coupled to) the inflationary sector. We use classical lattice simulations in an expanding box in (3+1) dimensions, modeling the SM gauge interactions with both global and Abelian-Higgs analogue scenarios. We consider different post-inflationary expansion rates. During inflation, the Higgs forms a condensate, which starts oscillating soon after inflation ends. Via nonperturbative effects, the oscillations lead to a fast decay of the Higgs into the SM species, transferring most of the energy into ZZ and W±W^{\pm} bosons. All species are initially excited far away from equilibrium, but their interactions lead them into a stationary stage, with exact equipartition among the different energy components. From there on the system eventually reaches equilibrium. We have characterized in detail, in the different expansion histories considered, the evolution of the Higgs and of its dominant decay products, until equipartition is established. We provide a useful mapping between simulations with different parameters, from where we derive a master formula for the Higgs decay time, as a function of the coupling constants, Higgs initial amplitude and postinflationary expansion rate.Comment: Minor changes to match the PRD published version. Modulation of the Higgs amplitude removed for q>200q > 200 in Sec. V, due to improving the time resolution in the Higgs equation of motion. Results unaffecte

    Gravitational wave production from the decay of the Standard Model Higgs field after inflation

    Full text link
    During or towards the end of inflation, the Standard Model (SM) Higgs forms a condensate with a large amplitude. Following inflation, the condensate oscillates, decaying non-perturbatively into the rest of the SM species. The resulting out-of-equilibrium dynamics converts a fraction of the energy available into gravitational waves (GW). We study this process using classical lattice simulations in an expanding box, following the energetically dominant electroweak gauge bosons W±W^\pm and ZZ. We characterize the GW spectrum as a function of the running couplings, Higgs initial amplitude, and post-inflationary expansion rate. As long as the SM is decoupled from the inflationary sector, the generation of this background is universally expected, independently of the nature of inflation. Our study demonstrates the efficiency of GW emission by gauge fields undergoing parametric resonance. The initial energy of the Higgs condensate represents however, only a tiny fraction of the inflationary energy. Consequently, the resulting background is very suppressed, with an amplitude h2ΩGW(o)1029h^2 \Omega_{\rm GW}^{(o)} \lesssim 10^{-29} today. The amplitude can be boosted to h2ΩGW(o)1016h^2 \Omega_{\rm GW}^{(o)} \lesssim 10^{-16}, if following inflation the universe undergoes a kination-domination stage; however the background is shifted in this case to high frequencies fp1011Hzf_p \lesssim 10^{11} {\rm Hz}. In all cases the signal is out of the range of current or planned GW detectors. This background will therefore remain, most likely, as a curiosity of the SM.Comment: 16 pages, 6 figures. Minor changes to match version published in PR

    Characterization of TrxC, an Atypical Thioredoxin Exclusively Present in Cyanobacteria

    Get PDF
    Cyanobacteria form a diverse group of oxygenic photosynthetic prokaryotes considered to be the antecessor of plant chloroplast. They contain four different thioredoxins isoforms, three of them corresponding to m, x and y type present in plant chloroplast, while the fourth one (named TrxC) is exclusively found in cyanobacteria. TrxC has a modified active site (WCGLC) instead of the canonical (WCGPC) present in most thioredoxins. We have purified it and assayed its activity but surprisingly TrxC lacked all the classical activities, such as insulin precipitation or activation of the fructose-1,6-bisphosphatase. Mutants lacking trxC or over-expressing it were generated in the model cyanobacterium Synechocystis sp. PCC 6803 and their phenotypes have been analyzed. The ΔtrxC mutant grew at similar rates to WT in all conditions tested although it showed an increased carotenoid content especially under low carbon conditions. Overexpression strains showed reduced growth under the same conditions and accumulated lower amounts of carotenoids. They also showed lower oxygen evolution rates at high light but higher Fv’/Fm’ and Non-photochemical-quenching (NPQ) in dark adapted cells, suggesting a more oxidized plastoquinone pool. All these data suggest that TrxC might have a role in regulating photosynthetic adaptation to low carbon and/or high light conditions.España, MINECO BIO2016-75634-PJunta de Andalucía P12-BIO-1119 , BIO-28

    Coupled Negative magnetocapacitance and magnetic susceptibility in a Kagome staircase-like compound Co3V2O8

    Full text link
    The dielectric constant of the Kagome staircase-like Co3V2O8 polycrystalline compound has been measured as function of temperature and magnetic field up to 14T. It is found that the application of an external magnetic field suppresses the anomaly for the dielectric constant beyond 6.1K. Furthermore, its magnetic field dependence reveals a negative magnetocapacitance which is proportional to the magnetic susceptibility, suggesting a common magnetostrictive origin for the magnetic field dependence of the two quantities. This result is very different from that obtained from the isostructural compound Ni3V2O8 that presents a peak in the dielectric constant at the incommensurate magnetic phase transition coupled to a sign change of the magnetocapacitance

    Pair Creation of Dilaton Black Holes in Extended Inflation

    Get PDF
    Dilatonic Charged Nariai instantons mediate the nucleation of black hole pairs during extended chaotic inflation. Depending on the dilaton and inflaton fields, the black holes are described by one of two approximations in the Lorentzian regime. For each case we find Euclidean solutions that satisfy the no boundary proposal. The complex initial values of the dilaton and inflaton are determined, and the pair creation rate is calculated from the Euclidean action. Similar to standard inflation, black holes are abundantly produced near the Planck boundary, but highly suppressed later on. An unusual feature we find is that the earlier in inflation that the dilatonic black holes are created, the more highly charged they can be.Comment: 23 pages, LaTeX, 6 figures; submitted to Phys. Rev.

    The local B-polarization of the CMB: a very sensitive probe of cosmic defects

    Get PDF
    We present a new and especially powerful signature of cosmic strings and other topological or non-topological defects in the polarization of the cosmic microwave background (CMB). We show that even if defects contribute 1% or less in the CMB temperature anisotropy spectrum, their signature in the local B~\tilde{B}-polarization correlation function at angular scales of tens of arc minutes is much larger than that due to gravitational waves from inflation, even if the latter contribute with a ratio as big as r0.1r\simeq 0.1 to the temperature anisotropies. We show that when going from non-local to local B~\tilde{B}-polarization, the ratio of the defect signal-to-noise with respect to the inflationary value increases by about an order of magnitude. Proposed B-polarization experiments, with a good sensitivity on arcminute scales, may either detect a contribution from topological defects produced after inflation or place stringent limits on them. Even Planck should be able to improve present constraints on defect models by at least an order of magnitude, to the level of \ep <10^{-7}. A future full-sky experiment like CMBpol, with polarization sensitivities of the order of 1μ1\muK-arcmin, will be able to constrain the defect parameter \ep=Gv^2 to a few ×109\times10^{-9}, depending on the defect model.Comment: Version Published in Physics Letters

    Cosmic Microwave Background temperature and polarization anisotropies from the large-N limit of global defects

    Full text link
    We determine the full C_l spectra and correlation functions of the temperature and polarization anisotropies in the CMB, generated by a source modeled by the large N limit of spontaneously broken global O(N)-theories. We point out a problem in the standard approach of treating the radiation-matter transition by interpolating the eigenvectors of the unequal-time correlators of the source energy-momentum tensor. This affects the CMB predictions from all type of cosmic defects. We propose a method to overcome this difficulty, and find that in the large-N global model that we study, differences in the final CMB power spectra amplitudes reach up to 25%, when compared to implementations of the eigenvector interpolation technique. We discuss as well how to optimally search for the contribution in the CMB from active sources such as cosmic defects, in experiments like Planck, COrE and PRISM.Comment: 16+4 pages, 13 figures (Version 2: minor changes to match published version in PRD

    The Galactic Center as a point source of neutrons at EeV energies

    Get PDF
    The central region of our Galaxy is a very peculiar environment, containing magnetic fields in excess of 100 mG and gas densities reaching ~ 10^4cm^-3. This region was observed as a strong source of GeV and TeVs gammas, what suggests that a mechanism of proton-neutron conversion could be taking place therein. We propose that the Galactic Center must also be a source of EeV neutrons due to the conversion of ultra high energy cosmic ray protons into neutrons via p-p interactions inside this region. This scenario should be falsifiable by the Pierre Auger Observatory after a few years of full exposure
    corecore